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SUMMARY 
 
This tutorial provides an introduction to the application of knowledge-based processing to the general radar 
problem.  We interpret knowledge-based processing as the use of adaptivity and the exploitation of prior 
knowledge in such a way as to choose the optimum processing method in each case, and we interpret the 
general radar problem as the detection, classification and tracking of targets against a background of clutter 
and interference.  As such the tutorial attempts to describe the nature of the general radar problem and the 
basic processing techniques that are used, and to show why knowledge-based signal processing may be 
advantageous, setting the scene for the subsequent tutorials covering CFAR detection, space-time adaptive 
processing, tracking, and emerging technologies.  The fundamental concepts of matched filtering, 
superresolution and adaptive filtering are described, emphasizing the equivalence of time/frequency and 
aperture/angular domains, and introducing the concept of Space-Time Adaptive Processing.  A description 
is given of some of the statistical clutter models in common use (Rayleigh, Ricean, Lognormal, Weibull and 
Compound-K), with practical examples of sea clutter and of land clutter which demonstrate that clutter is in 
general non-Gaussian and non-stationary, both in time and space.  Two examples are given of the 
application of adaptive techniques to the suppression on nonhomogeneous clutter, showing that the 
performance of the adaptive Doppler filtering algorithm is severely compromised at clutter edges, due to 
incorrect estimation of the clutter covariance matrix, and how in Space-Time Adaptive Processing a non-
homogeneity detector can be used in the choice of the most appropriate STAP algorithm, forming the so-
called Knowledge-Based STAP (KB-STAP) processor. 
 
 
 
 

1.  INTRODUCTION 

 

The concept of adaptivity is central to the operation of modern radar signal and data processing.  A single 
filtering, detection or tracking algorithm is not going to be optimum for all scenarios.  Since Brennan and 
Reed’s classic paper in 1973 [12], adaptive algorithms for detection, spatial filtering and Doppler filtering 
have been extensively studied and different algorithms have been devised to cope with different scenarios 
of targets, clutter and interference.  At the same time, information theory tells us that prior knowledge can 
(and should) be used to reduce the uncertainty in processing decisions.  In the radar context, such prior 
knowledge may take the form of information about the particular targets being sought, the inhomogeneity 
and topography of terrain, or meteorological conditions.  Knowledge-based systems form part of the subject 
of artificial intelligence, in which a knowledge base is used to guide an inference engine to make its 
processing decisions.  The concept, then, of knowledge-based signal processing is to make use of prior 
information in such a way as to choose the optimum processing method in each case. 
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We interpret the ‘general radar problem’ as being the radar detection, classification and tracking of targets 
against a background of clutter and interference, with acceptable probabilities of detection and of false 
alarm.  The radar may be terrestrial, maritime, airborne or space-based.  We will assume in general that the 
radar will utilise a phased array antenna (linear or planar, or even conformal), allowing electronic control of 
the radiation pattern on receive and possibly on transmit as well, and we assume that there is explicit control 
of the radar waveform(s) which will be generated digitally and which may be varied on a pulse-to-pulse 
basis, and that these waveforms may be of substantial bandwidth, giving high range resolution.  As well as 
the radar waveform, the dwell time and the pulse repetition frequency (PRF) may also be varied. 
 
Thus this tutorial will provide an introduction, successively, to the application of knowledge-based 
techniques to filtering and detection (including space-time adaptive filtering), the nature of clutter, and 
tracking, aiming to show why knowledge-based signal processing may be advantageous, and to set the 
scene for the subsequent tutorials covering CFAR detection, space-time adaptive processing, tracking, and 
emerging technologies.   
 
 
2.  FILTERING AND DETECTION 
 
2.1  The Matched Filter 
We recall here the classical theory of the matched filter [32].  The matched filter maximizes the ratio of 
peak signal power to mean noise power.  Let the transmitted waveform be u(t).  Its spectrum F(ω) is 
 

 ( ) ( ) ( )expF u t j t dtω ω
∞

−∞

= −∫  (1) 

 
If the receiver transfer function is H(ω) the output signal from the receiver prior to envelope detection is 
 

 ( ) ( ) ( ) ( )expg t F G j t dfω ω ω
∞

−∞

= ∫  (2) 

 
Let g(t0) be the maximum value of g(t).  The power spectrum of the noise at the output of the matched filter 
is: 

 ( ) ( ) 20

2
Ng Hω ω=  (3) 

 
where N0/2 is the noise spectral density at the input.  The average noise power is then: 
 

 ( ) 20

2
NN H dfω

∞

−∞

= ∫  (4) 

 
The energy of the input signal can be written: 
 

 ( ) ( ) 22E u t dt F dω ω
∞ ∞

−∞ −∞

= =∫ ∫  (5) 

 
An optimum radar detector must maximize the ratio of peak signal power to mean noise power at its output: 
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So we seek the receiver transfer function H(ω) which maximizes this ratio.  This can be found using 
Schwartz’s inequality: 
 

 
( ) 2

0

0

2  
g t E

N N
≤  (7) 

 
The maximum output signal-to-noise ratio occurs when the two sides are equal, which is true only if: 
 
 ( ) ( ) ( )*

0 expH K F j tω ω ω= −  (8) 
 
where K is a constant (gain) and t0 is the time delay through the filter. 
 
This says that the frequency response of the matched filter is equal (apart from K and t0) to the complex 
conjugate of the signal spectrum F(ω). 
 
The impulse response of the matched filter is: 
 
 ( ) ( )*

2 0h t K u t t= −  (9) 
 
which is a time-delayed inverse of the input waveform, multiplied by a simple gain constant. 
 
The time-domain output is the convolution of the input signal with the impulse response, which is: 
 

 ( ) ( ) ( )
2

0 0
2

1 T

T

g t f f t t d
T

τ τ τ
−

= + −∫  (10) 

 
which is the autocorrelation function of the input signal (in the absence of noise). 
 
In summary: 
 

• the matched filter maximizes the ratio of peak signal power to mean noise power; 
 

• its frequency response is the complex conjugate of the spectrum of the input signal; 
 

• its impulse response is the time-inverse of the input waveform; 
 

• the matched-filtered output waveform is the autocorrelation function of the input waveform. 
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2.2  Equivalence of Time/Frequency and Angular/Aperture Domains 
The matched filter for a sampled sinusoid consists of summing the samples with unit amplitude weighting, 
and the resulting time-domain output is: 
 

 ( ) ( )
1

exp 2 /
N

n
n

h t a j n Nπ
=

= −∑  (11) 

 
It is easy to see that this is exactly equivalent to the sampling by a linear antenna array of an incoming 
sinusoidal waveform (Figure 1).  The resulting radiation pattern of the array steered to the direction of 
incidence θ0 has the familiar form: 
 

 ( )
( )

( )

0

0

sin sin sin

sin sin sin

Nd

D
dN

π θ θ
λθ
π θ θ
λ

 − 
 =

 − 
 

 (12) 

 
where N is the number of elements, λ is the wavelength and d is the interelement spacing. 
 
Thus the array forms a spatial matched filter, matched to the direction of incidence θ0.  This illustrates the  
equivalence between on one hand the Fourier transform relationship between the time domain and 
frequency, and on the other the Fourier transform relationship between the aperture domain and the angular 
(sin θ) domain.  Thus all of the processing techniques developed for time domain / frequency domain can 
equally be applied in the aperture domain / angular domain.  These include: 
 

• matched filtering (as described above); 
 

• the effects of the sampling theorem (aliasing); in the angular domain aliasing results in grating 
lobes; 

 
• formation of a set of orthogonal filterbank responses by the Discrete Fourier Transform [10, 11]; in 

the angular domain the equivalent process is carried out by the Butler Matrix producing a set of 
orthogonal beams [14]; 

 
• weighting to reduce sidelobes (at the expense of loss and of broadening of response); the same 

weighting functions (Taylor, Chebyshev, …) are usable; 
 

• synthesis of a desired radiation pattern (or spectrum) from a uniformly-spaced set of aperture (or 
time series) samples [49]; 

 
• superresolution techniques; 

 
• adaptive filtering. 

 
 
2.3  Superresolution Techniques 
‘Superresolution’ is a term used to describe a set of processing techniques which attempt to resolve signals 
of closer angular separation than the classical Rayleigh λ/D limit (where λ is the signal wavelength and D 
the array length).  An intuitive demonstration that this can be done is provided by considering the ‘tree’ 
structure of phase shifters and combiners shown in Figure 2, and known as the ‘Davies Beamformer’ [17]. 
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In 1979, Schmidt presented one of the earliest, and certainly one of the best-known of the superresolution 
algorithms, which he named MUltiple SIgnal Classification, or MUSIC [36].  A similar formulation had 
been published earlier the same year by Bienvenu [7]. 
 
Consider an M-element array of arbitrary geometry, with n incident signals F1,  F2,  .. . , Fn  (n ≤ M). The 
element signals X1,  X2,  ...  , XM  can be written as 
 
 X1 = a11F1 + a21F2  + . . .  + aD1Fn  + W1  
 X2  = a12F1  + a22F2  + . . .  + aD2 Fn  + W2  
   : =     : +     : + . . .  +     : +    : 
 XM  = a1M F1  + a2 M F2  + . . .  + aDM Fn  + WM  
 
or in matrix notation 
 
 = +X AF W  (13) 
 
Here the terms W1 , W2 , ... WM  represent the noise at the array elements.  This noise may be either 
internally or externally-generated. 
 
The matrix A is known as the array manifold, and its coefficients depend on the element positions and 
directional responses.  The jth column of A is a mode vector a(θ) of responses of the array to the direction of 
arrival θ j  The mode vectors and X can each be visualized as vectors in M-dimensional space, and X is a 
linear combination of mode vectors, where the coefficients are the elements of F. 
 
The covariance matrix R is formed by averaging a number of ‘snapshots’ of the element signals 
 
 *=R XX  
 
 * * 2+ σ= AFF A I  (14) 
 
under the assumption that the signals and noise are uncorrelated, and where the elements of the noise vector 
W are zero mean and of variance σ 2 . 
 
The covariance matrix can be broken down into its eigenvectors and eigenvalues 
 

 * *

1
  

N

i i
i

ιλ
=

= =∑R e e ELE  (15) 

 
The eigenvalues λ ι  of the covariance matrix will be 
 
 

2 2>  for 1,  ... , ,   and   for 1,  ... ,i n i n Mι ιλ σ λ σ= = = +  (16) 
 
The number of incident signals can therefore be determined by inspection of the relative magnitudes of the 
eigenvalues, or in some situations this information may be known a priori. 
 
Consequently, the covariance matrix can be partitioned into an n-dimensional subspace spanned by the 
incident signal mode vectors and an M−n dimensional subspace spanned by the M−n noise eigenvectors 
 
 * *   + S S S N N N=R E L E E L E  (17) 
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where E S  is the M by n signal subspace and E N  is the M by M−n noise subspace. 

 
The MUSIC algorithm then estimates the angular spectrum P θ( )  of the incident signals according to 
 

 ( ) ( ) ( )* *

1

N N

P θ
θ θ

=
a E E a

 (18) 

 
A large number of other superresolution algorithms have been formulated and evaluated, giving improved 
performance over the basic MUSIC algorithm.  These include search-free methods such as ESPRIT 
(Estimation of Signal Parameters by Rotational Invariance Technique) and TAM, one-dimensional 
parameter search methods such as MUSIC and Capon’s MVDR, and multidimensional search schemes such 
as IMP (Incremental MultiParameter), stochastic and deterministic max-likelihood, and WSF.  Algorithms 
of this kind are described in detail in reference [25]. 

 
Figure 3 shows an attempt to classify these algorithms, into those which work with arrays of arbitrary 
geometry and those which are formulated for uniformly-spaced linear arrays.  The algorithms are also 
divided into those based on translational invariance, one-dimensional parameter searches, and multi-
dimensional parameter searches. 
 
A particular problem occurs when the incident signals are correlated - such as would be the case with 
multipath, for example.  In this case the MUSIC algorithm does not perform well, and a ‘pre-whitening’ 
process is necessary to decorrelate the input signals applied to the algorithm. This may be done by taking 
successive subaperture samples of the complete array, and using these as the inputs to the algorithm [38]. 
 
The description of superresolution presented here has been in terms of the aperture / angular domains, but 
clearly in view of the discussion of Section 2.2 the process can be applied equally in the time / frequency 
domains.  It is interesting to note that the original description of the MUSIC algorithm includes the 
polarization domain as well [36]. 
 
2.4  Adaptive Filtering 
The derivation of the matched filter in section 2.1 assumed a uniform noise distribution.  We consider now 
the situation when the noise is inhomogeneous.  Suppose we have an N-element array, of λ/2 spacing, in an 
environment of noise (interference and/or jamming) of which the angular distribution, in intensity, is fixed 
by a function T(τ) (where τ = sin θ).  There is a wanted signal in the direction τ 0 .  The optimization 
criterion chosen here is to maximize the ratio between the array gain in this direction, G(τ 0 ), and the total 
noise power T A  received by the antenna.  This ratio is sometimes called the ‘factor of merit’ 
 

 
( )0

A

G
M

T
τ

=  (19) 

 
The gain G(τ 0 ) is proportional to the square modulus of the characteristic function, which in turn is the 
Fourier Transform of the set of weight coefficients.  We can therefore write: 
 

 ( ) ( )
2

0 0
1

exp 2
N

nG W j nτ τ= π∑  (20) 

 
We define the ‘weight matrix’ or ‘weight vector’ by the column matrix 
 

Knowledge-Based Solutions as they Apply to the General Radar Problem  

3 - 6 RTO-EN-SET-063bis 

 

 



 
1

 :

N

W

W

 
 =  
  

W  (21) 

 
The steering vector defining the pointing direction is written in the same way 
 

 
( )

( )

0
0

0

1
exp

:
exp

j

j N

τ

τ

 
 π =
 
 π  

D  (22) 

 
The gain G(τ 0 ) is therefore written 
 

 ( ) 2t
0 0G τ = W D  (23) 

 
(The symbol W t  denotes the transpose of W). 
 
In the same way as the gain, the noise power received can be expressed in terms of the weight vector W 
 

 
1

N

n ns W= ∑S  (24) 

 
The set of element signals is 
 

 
1

 :

N

s

s

 
 =  
  

σ  (25) 

 
so we can write 
 
 t t= =S W Wσ σ  (26) 
 
The noise power is therefore 
 

 ( )2 * t t † * t
AT = = = =S S S W W W Wσ σ σ σ  (27) 

 
where W†  is the adjoint matrix of W. 
 
The covariance matrix R can be recognized in the product σ*σ t , thus 
 

Knowledge-Based Solutions as they Apply to the General Radar Problem  

RTO-EN-SET-063bis 3 - 7 

 

 



 [ ]

*
21 *

1 1*
* 2

1

2*
* 1

 ...     
 :

N
t

N

N N
N

s
s s s

s
s s

s s ss

         = = =         

R
L

M M

L

σ σ  (28) 

 
The factor of merit is therefore written 
 

 
( )

2

00
†

t

A

G
M

T
τ

= =
W D
W RW

 (29) 

 
The problem of the optimum array is now to find a weight vector W which maximizes the factor of merit 
M.  This reduces to finding the vector ˆ W  such that the factor of merit is stationary with respect to a 
perturbation dW.  The solution is: 
 
 0

ˆ k=RW D  (30) 
 
where k is an arbitrary scalar constant. 
 
If the covariance matrix can be inverted, we obtain 
 
 1

0
ˆ k −=W R D  (31) 

 
This says that the optimum weight vector is obtained by forming an estimate of the covariance matrix, 
inverting it, and multiplying by a steering vector to define the required direction of maximum gain.  The 
estimate of the covariance matrix is formed by averaging a number of ‘snapshots’ of the element signals, 
and Reed, Mallett and Brennan [35] showed that the number of samples K must be such that  
 
 ( )2 3K N≥ −  (32) 
 
This is sometimes known as ‘Brennan’s law’. 
 
Although this discussion has been in terms of the radiation pattern of an adaptive antenna array, the 
discussion of section 2.2 shows that it is equally applicable to adaptive Doppler filtering.  This formed the 
basis of Brennan and Reed’s classic 1973 paper [12]. 
 
 
2.5  Space-Time Adaptive Processing 
Space-Time Adaptive Filtering (STAP) is a two-dimensional combination of adaptive antenna array and 
adaptive Doppler filtering to suppress clutter and jamming [27].  Figure 4 shows a sideways-looking 
airborne radar, from which it can be seen that the Doppler shift associated with an echo from an angle θ 
from boresight is 
 

 02 sin
D

vff
c

θ
=  (33) 
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Figure 5 shows a two-dimensional plot of the clutter and jamming, as a function of angle (sin θ extending 
from −1 to +1) and of Doppler (extending from –PRF/2 to +PRF/2).  There is a weak target at boresight, 
and it can be appreciated from the diagram that two-dimensional filtering is necessary to suppress the 
clutter and jamming to reveal the target. 
 
The ‘STAP data cube’ (Figure 6) is thus used to estimate the covariance matrix.  One important aspect of 
research into STAP techniques is to devise efficient ways of computing the inverse of the covariance 
matrix, since direct inversion is usually impractical.  Reduced-dimension STAP (RD-STAP) is one such 
technique.  Further such techniques will be described in the fifth lecture in this series. 
 
 
3.  CLUTTER AND DETECTION 
 
3.1  Introduction 
Radar clutter has been studied since the earliest days of radar.  A proper knowledge of the statistics of radar 
clutter is essential in predicting radar detection performance, i.e. in ensuring correct setting of the detection 
threshold in CFAR (constant false alarm rate) processing, and in determining the clutter residue at the 
output of Doppler filter processors [8]. 
 
For radars of low or moderate resolution, Gaussian statistics have for many years given adequate results, 
both for land and sea clutter.  However, for high resolution radars at low grazing angles, it has been found 
that clutter pdfs (probability density functions) deviate quite markedly from Gaussian, and consequently 
that the detection performance predicted by Gaussian clutter models does not agree well with practical 
experience.  This is particularly true for the ‘tails’ of the distributions, which are exactly the parts which 
have the greatest effect on the false alarm rate.  Furthermore, high spatial resolution radars may be able to 
exploit the spatial and temporal correlation properties of the clutter, so models which can take this into 
account can give superior performance.  Various models have therefore been proposed and analyzed to give 
improved performance. 
 
In addition, it is important to understand the effects of clutter inhomogeneities (edges) and discrete 
scatterers, and of range-ambiguous clutter [4].  The latter may be critical in evaluating the performance of 
naval radars operating in littoral environments.  The fact that clutter can be so variable underlines the idea 
that knowledge-based techniques should be valuable in using prior information to bring the most 
appropriate detection algorithms to bear. 
 
The next section provides a brief review of clutter models in current use. 
 
2.2  Clutter Models 
Rayleigh model:   The simplest model for radar clutter assumes that the clutter echo is the sum of a large 
number of contributions of similar amplitude and random phase, in which case the Central Limit Theorem 
indicates that the in-phase (I) and quadrature (Q) components are independent and Gaussian-distributed, in 
which case the intensity follows a negative-exponential distribution: 
 

 ( ) 1 expE
xf x

β β
 

= − 
 

 (34) 

 
and the corresponding pdf of the envelope-detected voltage z is Rayleigh: 
 

 ( )
22 exp                        0R

z zf z z
β β

 
= − ≥ 

 
 (35) 
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Ricean model:  If there is an additional non-random component in the clutter echo, the peak of the 
distribution is shifted so that the most probable value of the received power is not zero.  The pdf of the 
detected envelope can be written as: 
 

 ( )
2 2

0
0 0 0

exp
2

z z A zAf z I
ψ ψ ψ

   +
= −   

   
 (36) 

 
where I0(.) is the modified Bessel function of order zero, ψ0 is the variance of the noise, A is the amplitude 
of the coherent component, and the ratio of coherent to random scattering is proportional to A2/ψ0. 
 
Lognormal model:  The lognormal distribution is obtained from the normal distribution using the 
transformation x = ln(y).  The pdf of the detected envelope is: 
 

 ( )
2

2

2 1exp 2ln
22 m

zf z
zz σπσ

  
 = −  
   

 (37) 

 
where zm is the median value of z and σ2 is the standard deviation of ln(z). 
 
Weibull model:  The Weibull pdf [37] is intermediate between the Rayleigh and lognormal distributions: 
 

 ( )
1

expw
x xf z

ν ν
ν
β β β

−     
 = −        

 (38) 

 
where β is the scale parameter and ν is the shape parameter.  For ν = 2 the expression reduces to the 
Rayleigh case. 
 
In the 1970s, much research was done on the non-Gaussian characteristics of high-resolution clutter.  The 
lognormal distribution was found to give a better fit than the negative exponential distribution, but still fell 
short of describing adequately the single point statistics of coherent clutter. 
 
Compound K distribution model:  The K-distribution was originally devised in the context of optical 
scattering, and was subsequently applied in its compound from to radar sea clutter [40-46].  It consists of 
the product of a modulation component associated with the large scale structure (in the case of the sea 
surface this represents the long-wavelength swell waves) and Rayleigh-distributed speckle resulting from 
the coherent addition of contributions from the individual scatterers.  More recently, the K-distribution has 
also been found to give an accurate representation of the statistics of texture in high-resolution SAR images 
of rural target scenes [34], and even of texture in high-resolution sonar images of the seabed [22]. 
 
The Rayleigh distributed speckle component is described by: 
 

 ( )
2

2 2exp            for 0
2 4

x xf x y x
y y

π π 
= − < < ∞ 

 
 (39) 

 
and the modulation component is described by the chi-distribution: 
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 ( ) ( ) ( ) ( )2 1 2 22 exp            for 0bf y b b y yνν
ν

−= − < < ∞
Γ

 (40) 

 
where b is a scale parameter and ν is a shape parameter. 
 
Equations (39) and (40) are combined to yield the usual form of the compound K-distribution: 
 

 ( ) ( ) ( ) ( )1
4 2cf x cx K cxν

νν −=
Γ

 (41) 

 

where 
4

c b π
= is a scale parameter, ν is the same shape parameter as the chi-distributed modulation, and 

Kν(.) is the modified Bessel function of the third kind of order ν.  The shape parameter ν expresses the 
‘spikiness’ of the clutter.  For ν = ∞ the expression reduces to the Rayleigh distribution.,  Low values of 
shape parameter ν (<1) indicate spiky clutter. 
 
 
3.3  Sea clutter 
The properties of sea clutter will depend on a wide variety of parameters: : the radar parameters (frequency, 
polarization, resolution (in range and azimuth), incidence angle, …), and the surface parameters (wave 
height and wavelength, wind speed and direction, presence or absence of ‘whitecaps’, presence or absence 
of rainfall on the sea surface, …) and will depend on whether the sea surface is in the open ocean or in the 
littoral region.  Figures 7 and 8 show photographs of the sea surface from Sennen Cove in Cornwall, UK, 
from which simultaneous radar data was gathered.  In Figure 7, corresponding to a significant wave height 
of 4.3 m, the presence of whitecaps at once suggests that there are individual and discrete scattering events 
upon the relatively slow modulated surface.  In heavier sea conditions (Figure 8), corresponding to a 
significant wave height of 6.1 m, the whitecaps dominate even more and considerable areas of the scene are 
shadowed. 
 
The radar frequency was 9 GHz, and it operated in a staring mode, mounted on a clifftop with a grazing 
angle of 1.5˚.  The range resolution is 6 m.  Figure 9 shows 6 second blocks of data from this radar (at 
vertical polarization) as Weibull plots (logarithmic probability of occurrence versus amplitude), displaced 
for clarity. It is evident that neither the power nor the distribution is stable with time. 
 
Observation of the Doppler spectrum suggests that the clutter returns consist of discrete scatterers with a 
characteristic lifetime.  The upper plot of Figure 10 is a very high PRF Doppler trace over 60 seconds.  A 
series of individual scatterers can be seen to be breaking away from the underlying modulated Doppler 
spectrum.  The middle plot shows a distribution measure of the spikiness of the distribution using the 
normalised log estimate U.  The lower plot shows the proportion of the tails of the Doppler spectrum above 
the noise level.  In this case the underlying Doppler bin distribution is not spiky, rather it is non-stationary 
exponential. 
 
As an example of the problems faced by a CFAR detector, Figure 11 shows the detection threshold set by 
Cell Averaging (CA), Cell Averaging Greater Of (CAGO) and Order Statistic (OS) processors operating on 
simulated K-distributed clutter with shape parameter ν = 0.5 (i.e fairly spiky).  The number of reference 
cells is 32, and the threshold multiplier factor α is set to achieve Pfa = 10-4.  For the OS processor k is chosen 
as 20.  A 15 dB clutter edge is located at range bin no. 240.  A number of closely spaced targets of 16 dB 
signal-to-clutter ration are located between range bins 70 and 95, with isolated targets at range bins 150 and 
230. 
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Several points can be noted.  For the CA detector it is apparent that the closely spaced targets raise the 
detection threshold between range bins 60 and 110 so much that none of the targets are detected.  The 
isolated target at range bin 150 is detected, but the presence of the clutter edge raises the threshold in the 
vicinity of range bin 240, thereby masking the target at range bin 230.  Close examination of the figure also 
indicates that a false alarm will occur in range bin 246, due to the threshold being biased down by the low 
region of clutter power still within the CFAR window.  It is evident that for the CAGO processor the 
closely spaced targets are even more comprehensively masked by each other.  Again, the isolated target at 
range bin 150 is detected and the target at range bin 230 is masked by the clutter edge.  The clutter spike at 
sample 246 does not, however, cause a false alarm in the CAGO processor.  The OS processor can be seen 
to resolve the closely spaced targets and exhibits no discernable increase in the threshold in that region.  
The isolated target at range bin 150 is, of course, detected, and the target at range bin 230 is now detected 
and is not masked by the clutter edge.  This is achieved at the expense of a false alarm at range bin 246 
caused by the clutter edge, and almost another false alarm at sample 243.  The choice of a higher value of k, 
around 27 or 28, would eliminate the false alarms at the clutter edge, but would extend the region of target 
masking caused by the clutter edge to the left, causing masking of the target at range bin 230.  It is also 
apparent that in regions of homogeneous clutter the threshold is lowest for the CA processor and highest for 
the OS processor, reflecting the nominal loss for these respective processors. 
 
 
3.4  Land clutter [9] 
The properties of land clutter will depend on a wide variety of parameters: the radar parameters (frequency, 
polarization, resolution (in range and azimuth), incidence angle, …) as with sea clutter, and the surface 
properties (topography, dielectric properties, vegetation, moisture, wind speed and direction, time of day 
and season of year, …). 
 
As an example, land clutter data from the BYSON radar has been analyzed [23].  The BYSON radar (now 
decommissioned) was located at the Malvern site (formerly RSRE, DERA; now QinetiQ), and provided a 
fully-instrumented flexible experimental facility.  It used two modified Siemens Plessey AWS-5 naval radar 
transmitters, with digital waveform synthesis.  The radar is depicted in Figure 12 and its parameters 
summarized in Figure 13. 
 
Figure 14 shows an example of the result of fitting four of the clutter models described in section 3.2 to 
measured land clutter data.  A number of techniques exist to fit models to measured data, and thereby to 
estimate the parameters of the model distributions.  A standard approach is the maximum likelihood 
estimator, but no closed-form solution for the K-distribution has been found, so alternative techniques are 
required.  In the work described here the downhill simplex method has been used [33], implemented in 
Mathematica.  The goodness-of-fit in each case was evaluated by computing the mean square difference 
(MSD) between the model pdf and the measured data: 
 

 ( ) ( )( )2

1

1MSD
N

i i
i

p x f x
N =

= −∑  (42) 

 
The target scene in this example corresponds to a region at a range of 71.6 km, including a television 
transmitter mast located at Litchfield.  The model giving the best fit (lowest value of MSD) is highlighted.  
In all cases the K-distribution gives the best fit, and the K-distribution and Weibull models are noticeably 
superior to the other models.  There is little difference between HH and VV polarizations. 
 
Further analysis of the same data (Figure 15) with reference to the corresponding terrain height information 
(Figure 16) has shown that the clutter statistics can be highly variable [16].  The two swaths shown in 
Figure 15 include a number of man-made structures such as a motorway (highway) with metal lampposts, 
power pylons, and glasshouses.  A likelihood ratio test for individual range cells was used to classify the 
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data as exponential clutter (largely shadow), positive values (areas more likely to be an edge), and negative 
areas (more likely to be IID K), and the result is shown in Figure 17.  Many of the ‘spiky’ areas are related 
to man-made structures. 
 
The Doppler spectrum of land clutter will depend on the motion of wind-blown trees and other vegetation 
[9]. 
 
 
3.5  Application of Knowledge-based Processing 
The conclusion to be drawn from the preceding discussion is that radar clutter will in general be non-
Gaussian and non-stationary both in time and in space.  When interference and jamming are present the 
environment will be even more non-uniform. 
 
Adaptive Doppler filtering of nonhomogeneous clutter:  A study of the application of adaptive Doppler 
filtering to nonhomogeneous clutter [4] considered three types of inhomogeneity: 
 
(i) clutter in which the amplitude and spectral width in each range bin are randomly drawn from 

spatially invariant parent populations of specified characteristics.  This could represent, for 
example, high-resolution sea clutter or land clutter due to wind-blown fields or trees; 

 
(ii) clutter edges, in which the clutter amplitude and/or spectrum exhibit a step change at some point in 

the range profile of the clutter.  This could typically represent transitions between land and sea 
clutter or shadowed and illuminated surface clutter; 

 
(iii) clutter which is essentially homogeneous but in which a small number of range bins are corrupted 

by returns with significantly different amplitude and spectral characteristics, representing point-
clutter sources or extraneous targets. 

 
The performance is characterized in terms of the improvement factor (IF) defined as: 
 

 
( )
( )

IF
H T

out
H

out

S C
S C

= =
w ss w
w Rw

 (43) 

 
where R is the covariance matrix, as before, w is the desired filter weight vector and s is the vector of target 
returns.  The IF was calculated for eight edge scenarios, tabulated in Figure 18, and for number of reference 
bins K = 10, 20 and K → ∞.  The clutter is assumed to have a Gaussian spectrum, with spectral width given 
by its standard deviation σ0: 
 

 ( ) ( )2

22
00

1 exp
22

cf f
H f

σπσ

 − −
 =
 
 

 (44) 

 
In homogeneous clutter, as K →∞ the estimated covariance matrix tends to the exact description of the 
clutter in the test cell. However, in nonhomogeneous clutter, as K →∞ the estimated covariance matrix in 
general will differ from that in the test cell. 
 
Figure 19 shows the loss in IF around the clutter edge scenarios of Figure 18, and show that the losses can 
be substantial.  The paper [4] goes on to show that prefiltering MTI can restore some of this loss. 
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Inhomogeneity detector in Space-Time Adaptive Processing:  A second example of radar operation in 
nonhomogeneous clutter environments is in Space-Time Adaptive Processing.  A number of different STAP 
algorithms have been developed [1, 2], and it is evident that no one algorithm is optimal in all scenarios.  As 
the previous example has shown, the way in which the covariance matrix is estimated can have a great 
influence on the performance. 
 
The concept of Knowledge-Based STAP was therefore developed, in which several different STAP 
algorithms are provided, with knowledge-based selection of algorithm parameters and selection of 
secondary data.  The selection of the appropriate STAP algorithm for a given scenario is made on the basis 
of a non-homogeneity detector [1], and Figure 20 shows the basic scheme.  The KB-STAP scheme has been 
extensively evaluated using data from the MCARM testbed. 
 
 
4.  TRACKING 
 
The process of tracking consists of associating a set of detections to a particular target.  The detections may 
be those from a single sensor, or in the general case they may be from a network of different sensors.  The 
classical approach to monosensor tracking follows the stages of track initiation, plot-track correlation, track 
prediction, track filtering and track termination [19].  Classically the filtering process is provided by the α−β 
tracker, in which running averages of target position and velocity are maintained, updated at regular 
intervals.  The values of α and β control the ‘time constants’ of the running averages, and represent a 
compromise on one hand between the ability to suppress noise, and on the other hand the ability to track 
target manoeuvres. 
 
It can readily be appreciated that the tracking process offers great scope for adaptive processing and for the 
use of prior knowledge.  The Kalman filter [13] is perhaps a first stage in this; here the filter time constants 
are varied adaptively according to the target’s manoeuvres.  There are further possibilities in adaptively 
varying the filter update interval, and in filters such as the Interactive Multiple Model (IMM), Joint 
Probabilistic Data Association (JPDA) and Multi-Hypothesis Tracking (MHT).  These algorithms will be 
covered in the tutorial on application of knowledge-based techniques to the tracking function. 
 
 
5.  CONCLUSIONS 
 
This tutorial has attempted to provide an introduction to the application of knowledge-based processing to 
the general radar problem.  We have described the nature of the general radar problem and the basic 
processing techniques that are used.  The fundamental concepts of matched filtering, superresolution and 
adaptive filtering have been described, emphasizing the equivalence of time/frequency and aperture/angular 
domains, and introducing the concept of Space-Time Adaptive Processing. 
 
We have described some of the statistical clutter models in common use.  It should be emphasized that these 
are just models, and as such represent an idealization of reality; nevertheless, clutter models can be very 
useful in predicting radar detection performance.  Some practical examples of sea clutter and of land clutter 
have been presented, which demonstrate quite vividly that clutter is in general non-Gaussian and non-
stationary, both in time and space.  It is hoped this makes the case for the application of knowledge-based 
signal processing techniques to the general radar problem. 
 
The two examples of filtering in nonhomogeneous clutter environments are intended to illustrate this 
further, showing that the performance of the adaptive Doppler filtering algorithm is severely compromised 
at clutter edges, due to incorrect estimation of the clutter covariance matrix, and how in Space-Time 
Adaptive Processing a non-homogeneity detector can be used in the choice of the most appropriate STAP 
algorithm, forming the so-called Knowledge-Based STAP (KB-STAP) processor. 
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Figure 1.  Linear antenna array as a spatial matched 

filter. 
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Figure 2.  The Davies Beamformer. 
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Figure 3.  Classification of superresolution algorithms. 
 

 
 

Figure 4.  Doppler shift from a sideways-looking 
airborne radar. 

 
 
 

 
 
 
Figure 5.  Space-Time Adaptive Processing (STAP): 

adaptive filtering in angle and in Doppler. 
 
 
 

 
 
 

Figure 6.  The STAP data cube. 
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Figure 7.  Photograph of sea surface from Sennen 
Cove, Cornwall, UK; significant wave height = 4.3 m. 
 
 

 
 

Figure 8.  Photograph of sea surface from Sennen 
Cove, Cornwall, UK; significant wave height = 6.1 m. 
 
 

 
 

Figure 9.  Consecutive Weibull plots of 6 second 
blocks of V-pol data, displaced for clarity. Neither 
power nor distribution is stable with time showing 

2nd order statistics are necessary. 

 
 
Figure 10.  (a) High PRF Doppler trace over 60 second 

period; (b) distribution measure of spikiness; (c) 
proportion of tails of the Doppler spectrum above 

noise level [15]. 
 
 

 
 

Figure 11.  K-distributed noise (ν = 0.5), 32 cell 
CFAR, 16dB targets multiple @ 70-90, isolated 

target @ 150, potentially masked @ 230 by 14dB 
edge at 240 onwards. 

 
 

 
 

Figure 12.  The BYSON radar. 

Knowledge-Based Solutions as they Apply to the General Radar Problem  

RTO-EN-SET-063bis 3 - 19 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.  BYSON radar parameters [23]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.  Fit of Weibull, lognormal, Ricean 
and K-distribution models to high-resolution 

land clutter data acquired using BYSON radar 
[23]. 

 
 

 
 

Figure 15.  BYSON data (intensity in dB) [16]. 
 

 

 
 

Figure 16.  Digital elevation data corresponding to 
data of Figure 15 [16]. 

 
 

 
 
Figure 17.  Likelihood ratio (log10) for individual range 

cells.  White areas are classed as exponential clutter 
(largely shadow), positive values are more likely to be 

an edge, negative areas are more likely to be IID K.  
Note the motorway is visible as bright blue [16]. 
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5 30 0.02 0 40 0.1 0.0 

6 30 0.02 0 40 0.1 0.5 
7 60 0.02 0 30 0.1 0.0 
8 50 0.02 0 30 0.05 0.0 

 
Figure 18.  Clutter edge scenarios [4]. 

 

 
pol dist MSD parameter values 
HH Weibull 0.4487 β=7.03E-3 ν=1.5101 
 lognormal 8.0164 σ2=22.796 zm=2.87E-6 

 Ricean 1.6403 ψ0=2.45E-2 A=3.017E-4 

 K-dist 0.3254 ν=1.388 b=53.33 

VV Weibull 0.3969 β=0.0129 ν=1.429 
 lognormal 6.0643 σ2=20.33 zm=5.18E-6 

 Ricean 1.7269 ψ0=0.031 A=3.05E-4 

 K-dist 0.2729 ν=1.164 b=37.85 
 

 
frequency 2.7 – 3.1 GHz, 

frequency agile 

PRF 100 Hz – 10 kHz 

antenna gain 46 dBi 

horizontal beamwidth 0.5° 

vertical beamwidth 1.0° 

polarisation Vertical, horizontal or 
circular 
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Figure 19.  Improvement Factor (IF) loss around clutter edges (N = 10)  (after [4]). 
(a) edge scenario 1 (e)  edge scenario 5 
(b) edge scenario 2 (f)  edge scenario 6 
(c) edge scenario 3 (g)  edge scenario 7 
(d) edge scenario 4 (h)  edge scenario 8 
×-------×       K = 20 
o-------o       K = 10 
----------       K →∞ 
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Figure 20.  Knowledge-Based STAP (after [1]). 
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